fMRI SEGMENTATION USING ECHO STATE NEURAL NETWORK
نویسندگان
چکیده
This research work proposes a new intelligent segmentation technique for functional Magnetic Resonance Imaging (fMRI). It has been implemented using an Echostate Neural Network (ESN). Segmentation is an important process that helps in identifying objects of the image. Existing segmentation methods are not able to exactly segment the complicated profile of the fMRI accurately. Segmentation of every pixel in the fMRI correctly helps in proper location of tumor. The presence of noise and artifacts poses a challenging problem in proper segmentation. The proposed ESN is an estimation method with energy minimization. The estimation property helps in better segmentation of the complicated profile of the fMRI. The performance of the new segmentation method is found to be better with higher peak signal to noise ratio (PSNR) of 61 when compared to the PSNR of the existing back-propagation algorithm (BPA) segmentation method which is 57.
منابع مشابه
Neural Network Approach for Herbal Medicine Market Segmentation
Market segmentation is the start point of executing targeted marketing strategy. This study aims to determine fit dimensions and appropriate specifications for the segmentation of herbal medicines market in order to provide production and market departments with fit strategies by identifying the profile of the market customers and recognizing their differences in the identified indices. This is...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کامل